The nuclear microspherule protein 58 is a novel RNA-binding protein that interacts with fragile X mental retardation protein in polyribosomal mRNPs from neurons.
نویسندگان
چکیده
The fragile X syndrome, the leading cause of inherited mental retardation, is due to the inactivation of the fragile mental retardation 1 gene (FMR1) and the subsequent absence of its gene product FMRP. This RNA-binding protein is thought to control mRNA translation and its absence in fragile X cells leads to alteration in protein synthesis. In neurons, FMRP is thought to repress specific mRNAs during their transport as silent ribonucleoparticles (mRNPs) from the cell body to the distant synapses which are the sites of local synthesis of neuro-specific proteins. The mechanism by which FMRP sorts out its different mRNAs targets might be tuned by the intervention of different proteins. Using a yeast two-hybrid system, we identified MicroSpherule Protein 58 (MSP58) as a novel FMRP-cellular partner. In cell cultures, we found that MSP58 is predominantly present in the nucleus where it interacts with the nuclear isoform of FMRP. However, in neurons but not in glial cells, MSP58 is also present in the cytoplasmic compartment, as well as in neurites, where it co-localizes with FMRP. Biochemical evidence is given that MSP58 is associated with polyribosomal poly(A)+ mRNPs. We also show that MSP58, similar to FMRP, is present on polyribosomes prepared from synaptoneurosomes and that it behaves as an RNA-binding protein with a high affinity to the G-quartet structure. We propose that this novel cellular partner for FMRP escorts FMRP-containing mRNP from the nucleus and nucleolus to the somato-dendritic compartment where it might participate in neuronal translation regulation.
منابع مشابه
Fragile Mental Retardation Protein Interacts with the RNA-Binding Protein Caprin1 in Neuronal RiboNucleoProtein Complexes
Fragile X syndrome is caused by the absence of the Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein. FMRP is associated with messenger RiboNucleoParticles (mRNPs) present in polyribosomes and its absence in neurons leads to alteration in synaptic plasticity as a result of translation regulation defects. The molecular mechanisms by which FMRP plays a role in translation regula...
متن کاملMethylation regulates the intracellular protein-protein and protein-RNA interactions of FMRP.
FMRP, the fragile X mental retardation protein, is an RNA-binding protein that interacts with approximately 4% of fetal brain mRNA. We have recently shown that a methyltransferase (MT) co-translationally methylates FMRP in vitro and that methylation modulates the ability of FMRP to bind mRNA. Here, we recapitulate these in vitro data in vivo, demonstrating that methylation of FMRP affects its a...
متن کاملTrapping of messenger RNA by Fragile X Mental Retardation protein into cytoplasmic granules induces translation repression.
Absence of Fragile X Mental Retardation Protein (FMRP), an RNA-binding protein, is responsible for the Fragile X syndrome, the most common form of inherited mental retardation. FMRP is a cytoplasmic protein associated with mRNP complexes containing poly(A)+mRNA. As a step towards understanding FMRP function(s), we have established the immortal STEK Fmr1 KO cell line and showed by transfection a...
متن کاملThe fragile X mental retardation protein interacts with a distinct mRNA nuclear export factor NXF2.
Loss of fragile X mental retardation protein, FMRP, causes the fragile X syndrome. Highly expressed in the brain and testis, FMRP has been implicated in the transport and translation of specific mRNAs. Here we show that FMRP and the mRNA nuclear export factor NXF2 co-express in the mouse male germ cells and hippocampal neurons and that FMRP associates with NXF2 but not with its close relative N...
متن کاملA novel RNA-binding nuclear protein that interacts with the fragile X mental retardation (FMR1) protein.
Silenced expression of the FMR1 gene is responsible for the fragile X syndrome. The FMR1 gene codes for an RNA binding protein (FMRP), which can shuttle between the nucleus and the cytoplasm and is found associated to polysomes in the cytoplasm. By two-hybrid assay in yeast, we identified a novel protein interacting with FMRP: nuclear FMRP interacting protein (NUFIP). NUFIP mRNA expression is s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 15 9 شماره
صفحات -
تاریخ انتشار 2006